FireBrick 3G Dongle

From AAISP Support Site

3G Fallback

The 2700 model has a usb port that can be used with a 3G dongle for connectivity and/or fallback. The FireBrick 2500 does not have a USB port) By using a 3G dongle with 1 or more FTTC/ADSL lines from AAISP you'll be able to fall back to using 3G in the case of the FTTC/ADSL going down - this includes routing of your public IP blocks and IPv6 blocks (IPv6 via a tunnel)

Support Dongles

Dongles do vary, and drivers may need to be written to support a particular dongle. (contact us if you have one which is not working.) The following dongles are known to work on a FireBrick 2700:

Basic 3G Config

If you have an AA data SIM, the FireBrick can configured to use this as a backup connection, by using a 3G dongle plugged into the USB port. Any routed legacy IP blocks will continue to work across this link, but so far IPv6 isn't supported (without using a tunnel). The basic config is:

<usb>
<dongle username="me@a.3" password="secret"/>
</usb>

Provided you use your AA username and password, then that's all you need to get the dongle configured. If your main broadband connection goes down, the FireBrick will automatically switch to use the 3G connection, then back again once your main connection is back.

If the dongle is not using a AAISP SIM, (and therefore your IPv4 blocks won't be re-routed down the dongle, then include NAT="true" on the dongle line.

Config with Tunnelled IPv6 Fallback

If using AAISP, then the options for IPv6 routing on the control pages allow an IPv6 block to be routed to a tunnel endpoint if the main routing (ie ADSL/FTTC) goes down. - This means IPv6 can be routed to the 3G dongle if the main broadband(s) go down. The MTU will be limited though.

Here we have some profiles to manage the 3G, and also add logging.

<usb log="true" profile="No_PPPoE">
  <dongle name="3G" username="me@a.3" password="secret" nat="false" graph="Backup" comment="AAISP data SIM"/>
</usb>

<route name="6in4" profile="No_DSL" graph="6in4" ip="::/0" gateway="81.187.81.6" comment="IPv6 Default route when AAISP DSL is down" />

<profile name="DSL" ppp="AAISP" comment="Monitoring the PPP link named AAISP"/>

<profile name="No_DSL" timeout="PT5S" recover="PT1S" not="DSL"/ comment="Just the not of the previous profile">

3G based on profiles - turning the dongle off overnight

Sometimes we don't want the dongle to be online 24x7 as it's not clear whether the dongle has got into a strange state or not. It's also not clear whether some of these devices are designed to be left connected all of the time.

This example brings the dongle online for quick fallback during office hours, and leaves it powered up but disconnected. Fallback still works out of office hours but takes a few seconds longer to set up.

Note that both <usb> and <dongle> elements can be based on profiles. Leaving <usb> active but disabling <dongle> will leave the dongle powered up but disconnected. Disabling <usb> will physically turn off the USB port and therefore also the dongle. Cold starts take a lot longer!

   <usb>
      <dongle name="Backup" username="example@a.3" password="password" nat="false" graph="3G" profile="3G"/>
   </usb>
   <profile name="Working_hours" comment="Office working times">
      <time days="Mon Tue Wed Thu Fri" start="08:00:00" stop="18:00:00"/>
   </profile>
   <profile name="No_PPP" ppp="ADSL1 ADSL2" invert="true"/>
   <profile name="3G" or="Working_hours No_PPP" comment="Backup active during the working day, or if there's no PPP at night"/>

This example is taken from a site which has 2 ADSL lines - hence the No_PPP profile being based on ADSL1 and ADSL2 being up. The 3G profile is then active during the Working hours, but it will become active if both of the ADSL lines are down out of hours.

Ping test example of falling back

Here we ping an IP on the LAN, behind the FB2700, and get the ADSL router to re-sync. The ADSL went down, the 3G kicked in with only a single ping lost, then shortly after the ADSL came back on and took over the routing again.

64 bytes from 81.187.xx.xxx: icmp_req=120 ttl=57 time=17.6 ms
64 bytes from 81.187.xx.xxx: icmp_req=121 ttl=57 time=18.1 ms
64 bytes from 81.187.xx.xxx: icmp_req=122 ttl=57 time=17.0 ms
64 bytes from 81.187.xx.xxx: icmp_req=123 ttl=57 time=20.4 ms
64 bytes from 81.187.xx.xxx: icmp_req=124 ttl=57 time=17.3 ms
64 bytes from 81.187.xx.xxx: icmp_req=125 ttl=57 time=17.2 ms
64 bytes from 81.187.xx.xxx: icmp_req=126 ttl=57 time=17.3 ms
From 90.155.53.12 icmp_seq=132 Time to live exceeded
64 bytes from 81.187.xx.xxx: icmp_req=133 ttl=57 time=792 ms <- Now on 3G
64 bytes from 81.187.xx.xxx: icmp_req=134 ttl=57 time=291 ms
64 bytes from 81.187.xx.xxx: icmp_req=135 ttl=57 time=451 ms
64 bytes from 81.187.xx.xxx: icmp_req=136 ttl=57 time=426 ms
64 bytes from 81.187.xx.xxx: icmp_req=137 ttl=57 time=338 ms

Some successful pings omitted as it took a while to sync again.

64 bytes from 81.187.xx.xxx: icmp_req=180 ttl=57 time=176 ms
64 bytes from 81.187.xx.xxx: icmp_req=181 ttl=57 time=276 ms
64 bytes from 81.187.xx.xxx: icmp_req=182 ttl=57 time=216 ms
64 bytes from 81.187.xx.xxx: icmp_req=183 ttl=57 time=174 ms
64 bytes from 81.187.xx.xxx: icmp_req=184 ttl=57 time=212 ms
64 bytes from 81.187.xx.xxx: icmp_req=187 ttl=57 time=16.3 ms  <- Now back on ADSL!
64 bytes from 81.187.xx.xxx: icmp_req=188 ttl=57 time=16.5 ms
64 bytes from 81.187.xx.xxx: icmp_req=189 ttl=57 time=16.2 ms
64 bytes from 81.187.xx.xxx: icmp_req=190 ttl=57 time=16.5 ms
64 bytes from 81.187.xx.xxx: icmp_req=191 ttl=57 time=16.6 ms
64 bytes from 81.187.xx.xxx: icmp_req=192 ttl=57 time=16.0 ms
64 bytes from 81.187.xx.xxx: icmp_req=193 ttl=57 time=16.8 ms

You can tell when the swap over happened as the latency increases and then decreases again when the DSL came back online

Telnet Commands

clear usb

Will reset the usb controller and re-detect everything from scratch.


show dongle

To show info


You can turn on debug logging to get more info

set command log level debug

-there will be lots of info coming out!